Strong vacuum squeezing from bichromatically driven Kerrlike cavities: from optomechanics to superconducting circuits

نویسندگان

  • Rafael Garcés
  • Germán J. de Valcárcel
چکیده

Squeezed light, displaying less fluctuation than vacuum in some observable, is key in the flourishing field of quantum technologies. Optical or microwave cavities containing a Kerr nonlinearity are known to potentially yield large levels of squeezing, which have been recently observed in optomechanics and nonlinear superconducting circuit platforms. Such Kerr-cavity squeezing however suffers from two fundamental drawbacks. First, optimal squeezing requires working close to turning points of a bistable cycle, which are highly unstable against noise thus rendering optimal squeezing inaccessible. Second, the light field has a macroscopic coherent component corresponding to the pump, making it less versatile than the so-called squeezed vacuum, characterised by a null mean field. Here we prove analytically and numerically that the bichromatic pumping of optomechanical and superconducting circuit cavities removes both limitations. This finding should boost the development of a new generation of robust vacuum squeezers in the microwave and optical domains with current technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong squeezing and robust entanglement in cavity electromechanics

We investigate nonlinear effects in an electromechanical system consisting of a superconducting charge qubit coupled to a transmission line resonator and a nanomechanical oscillator, which in turn is coupled to another transmission line resonator. The nonlinearities induced by the superconducting qubit and the optomechanical coupling play an important role in creating optomechanical entanglemen...

متن کامل

Cooling and squeezing via quadratic optomechanical coupling

We explore the physics of optomechanical systems in which an optical cavity mode is coupled parametrically to the square of the position of a mechanical oscillator. We derive an effective master equation describing two-phonon cooling of the mechanical oscillator. We show that for high temperatures and weak coupling, the steady-state phonon number distribution is nonthermal (Gaussian) and that e...

متن کامل

Quantum noise spectra for periodically driven cavity optomechanics

A growing number of experimental setups in cavity optomechanics exploit periodically driven fields. However, such setups are not amenable to analysis by using simple, yet powerful, closed-form expressions of linearized optomechanics, which have provided so much of our present understanding of experimental optomechanics. In the present paper, we formulate a method to calculate quantum noise spec...

متن کامل

Cavity piezomechanical strong coupling and frequency conversion on an aluminum nitride chip

Schemes to achieve strong coupling between mechanical modes of aluminum nitride microstructures and microwave cavity modes due to the piezoelectric effect are proposed. We show that the strong-coupling regime is feasible for an on-chip aluminum nitride device that is either enclosed by a three-dimensional microwave cavity or integrated with a superconducting coplanar resonator. Combining with o...

متن کامل

Weak qubit measurement with a nonlinear cavity: beyond perturbation theory.

We analyze the use of a driven nonlinear cavity to make a weak continuous measurement of a dispersively coupled qubit. We calculate the backaction dephasing rate and measurement rate beyond leading-order perturbation theory using a phase-space approach which accounts for cavity noise squeezing. Surprisingly, we find that increasing the coupling strength beyond the regime describable by leading-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016